

10W LED Driver User's Guide

© 2004-2009 Sure Electronics Inc. LE-LL313_Ver1.0

Table of Contents

Chapter 1. Overview	1
1.1 Overview	1
1.2 Feature	2
1.3 Application	3
Chapter 2. Hardware Detail	
2.1 Port Definition	
2.2 Connection	4
2.3 PWM Control Settings	
Chapter 3. Electrical Characteristics	
3.1 Specification	
3.2 The General Performance Specifications	
3.3 The Number of LEDs Connected in Series VS Input Voltage	
Chapter 4. Mechanical Drawing	
Chapter 5. Appendix	
Chapter 6. Contact Us	

10W LED Driver

NOTES:

Product Version : Ver 1.1

Document Version : Ver 1.0

Chapter 1. Overview

1.1 Overview

Welcome to use LED driver series by Sure Electronics. This series provide users many choices: 0.5W, 1W, 3W, 5W and 10W, which integrate MBI6651 chips from Macroblock – a high efficiency, constant current and step-down DC/DC converter. Featuring under voltage lock out (UVLO), over temperature protection, LED open-circuited protection and LED short-circuited protection, MBI6651 makes the drivers' application safer. Additionally, to ensure the system reliability, the MBI6651 builds thermal protection (TP) function inside. This function protects IC from overheating in various applications. Thus LED drivers shall serve for longer time.

This product consists of two same driver boards fixed in a tailored converter, which is also used to for connection with power supply and LEDs, outputting up to 10W power. This product features high efficiency, stability, long service time and easy installation. LED dimming can be controlled via an extra pulse width modulation (PWM) through DIM pin. More than 4 LEDs shall be connected in series.

FIGURE 1-1 FRONT VIEW OF ONE DRVIER BOARD

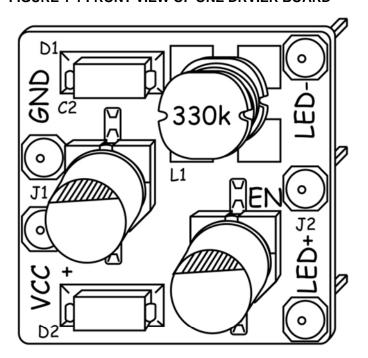
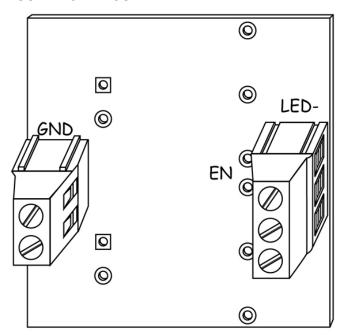



FIGURE 1-2 BACK VIEW OF ONE DRIVER BOARD

FIGURE 1-3 THE CONVERTER

1.2 Feature

- Minimized size, high efficiency
- Constant current output, stable LED lighting
- Input voltage: 9V to 35V
- 94% efficiency @ input voltage 24V, 3 LEDs
- Number of LEDs allowed to be connected in series: 4 but not the least
- Full protection: Thermal/UVLO(Under Voltage Lock Out)/Start-Up/LED Open-/Short-Circuit
- · Easy installation and long service life

1.3 Application

- Signage and Decorative LED Lighting
- Automotive LED Lighting
- High Power LED Lighting
- Constant Current Source

Chapter 2. Hardware Detail

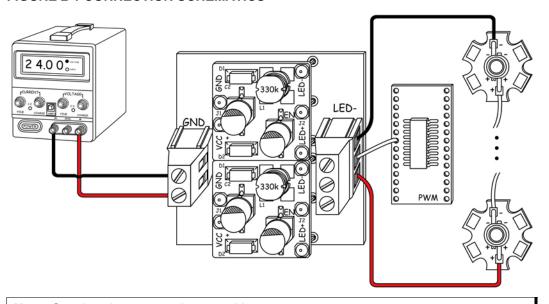
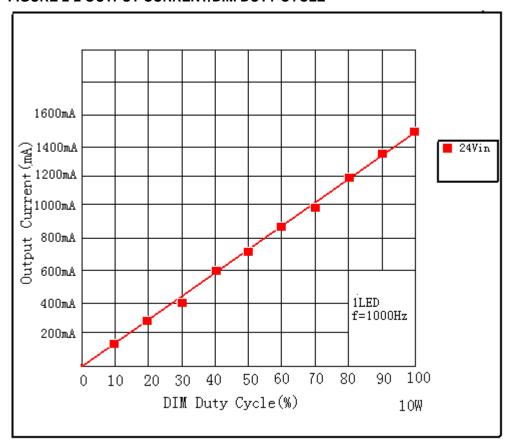

2.1 Port Definition

TABLE 2-1 PORT DEFINITION

Pin	Description		
VIN	Positive terminal for 9V to 35V DC Power supply		
GND	Power Ground		
LED+	Positive of LED terminal		
LED-	Negative of LED terminal		
EN	PWM terminal. When applied with +5V or suspended, full amount of current will be output and when connected with ground, output current will be 0.		

2.2 Connection

FIGURE 2-1 CONNECTION SCHEMATICS



Note: Supply voltage range is 9 to 35V.

2.3 PWM Control Settings

10W LED Driver Module

FIGURE 2-2 OUTPUT CURRENT/DIM DUTY CYCLE

© 2004-2009 Sure Electronics Inc.

Chapter 3. Electrical Characteristics

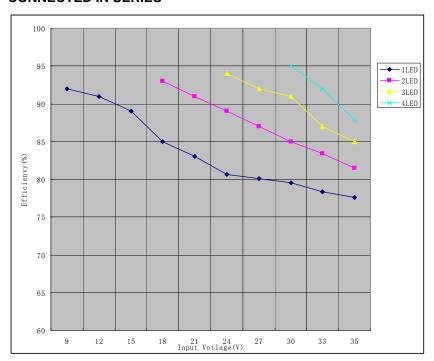
3.1 Specification

The typical parameters are listed in the table below.

Tested @ Vin=24V, 1 Luxeon White LED, tem 18℃ (unless noted otherwise)

TABLE 3-1 SPECIFICATION

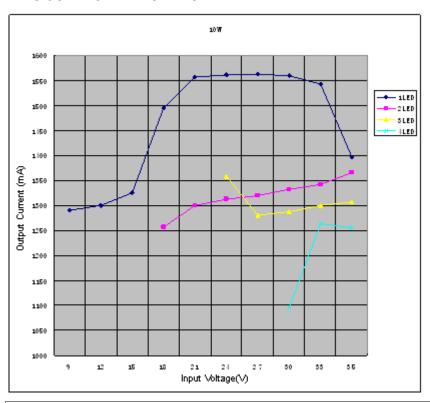
Parameters		Test Condition	Min.	Тур.	Max.	Unit
Supply Voltage		-	9	-	35	V
Supply Current (no load)		Vin=9V to 35V	-	2	5	mA
Output Current		l _{out}	1300	1500	1550	mA
Accuracy		-	-	±3	±10	%
Efficiency		Vin=24V, 3LEDs ,	-	94	-	%
Input	High Potential	-	3.5	-	-	V
Voltage* (EN)	Low Potential	-	-	-	0.5	٧
Minimum Time*	Turn-on	-	100	350	450	ns
Minimum Time*	Closing	-	100	350	450	ns
Maximum Operating Frequency* (Internal Frequency)		-	40	-	1000	KHz
Over Temperature Protection*		-	145	165	175	J
Over Temperature Protection Hysteretic State*		-	20	30	40	$^{\circ}$
Under Voltage Lock Out*		-	7.7	8	8.3	V
Restart Voltage*		-	7.85	8.2	8.65	V
Duty Cycle of Running via PWM through DIM pin		PWM Frequency 1KHz	1	-	100	%


10W LED Driver

Operating Temperature	-	-10	20	50	${\mathbb C}$
Storage Temperature	-	-55	20	+150	$^{\circ}\!$

Note: * from Data Sheet of MBI6651 chip. Please refer to the relevant documents for the details.

3.2 The General Performance Specifications


1. Efficiency Vs Input Voltage @ different number of LEDs connected in series FIGURE 3-1 EFFICIENCY VS INPUT VOLTAGE @ DIFFERENT NUMBER OF LEDS CONNECTED IN SERIES

2. Output Current Vs Input Voltage @ different number of LEDs connected in series

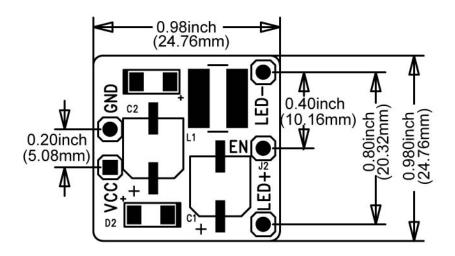
 $\ensuremath{\texttt{©}}$ 2004-2009 Sure Electronics Inc.

FIGURE 3-2 OUTPUT CURRENT VS INPUT VOLTAGE @ DIFFERENT NUMBER OF LEDS CONNECTED IN SERIES

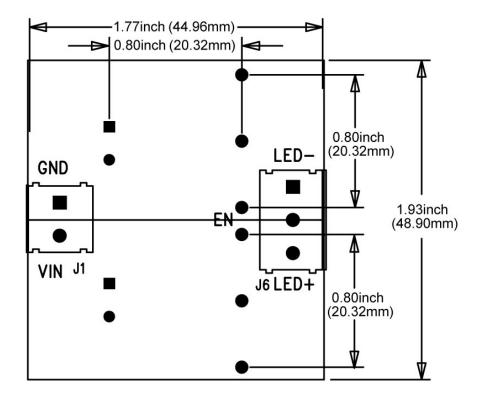
Note: Above are the actual measured values. There may be tolerance between different patches of LED driver boards.

3.3 The Number of LEDs Connected in Series VS Input Voltage TABLE 3-3 THE QUANTITY OF LEDS CONNECTED IN SERIES VS INPUT

VOLTAGE

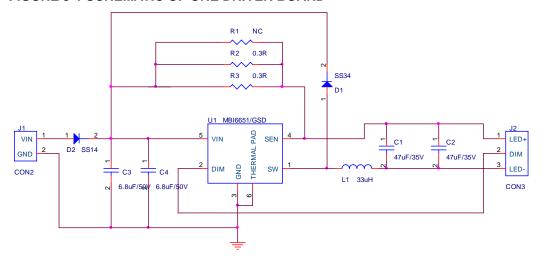

LED	1	2	3	4	>4
Vin	9 to 12V	18 to 35V	24 to 35V	30 to 35V	Untested

LE-LL313_Ver1.0_Page 8 © 2004-2009 Sure Electronics Inc



Chapter 4. Mechanical Drawing

FIGURE 4-1 MECHANICAL DRAWING OF ONE DRIVER BOARD


FIGURE 4-2 MECHANICAL DRAWING OF THE CONVETER

Chapter 5. Appendix

FIGURE 5-1 SCHEMATIC OF ONE DRIVER BOARD

Chapter 6. Contact Us

Sure Electronics Co., Ltd.

5F, Zone A,

Qinhuai Technology Innovation Center

105-2 DaMing Rd (ZIP:210022)

Nanjing P.R.China

Tel: +86-13601408832 (For technical questions only)

+86-25-66606340 (English service, from GMT1-10AM)

Fax: +86-25- 66606341-866
Website: www.sure-electronics.com
www.sure-electronics.net